
AD-7 86 7 23

LCFsmall: AN IMPLEMENTATION OF LCF

1. u i gi a A i e 1 I o . et a I

Stanford University

Prepared for:

Office of the Secretary of Defense
Advanced Research Projects Agency

August 1474

DISTRIBUTED BY:

mr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

*^HHA

PM_.

ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM No.241

AUGUST 1974

COMPUTER SCIENCE DEPARTEMENT REPORT
STAN CS 74-446

LCFsmall: an implementation of LCF

by
Luigia Aullo

and
Richard W. Weyhrauch

Abstract:

This is a report on a computer program implement ng a simplified version of LCF.
It is written (with mil.or exceptions) sntirely in pure LISP and has none of the user
oriented features of the implementation described by Milner. We attempt to represent
directly in code the inetamathematical notions necessary to describe LCF. We hope
that the code U simple »iinugh and the metamathematics is clear enough so that
properties of this particular program (e.g. its correctness) can eventually be proved.
The program is reproduced in full.

/
AuthoiV «ddrrnsrs

L Airllo, Uldulo di Klabnrazionr ilrll'InformaMono, via S. Maria 46, S6100 Pisa, Italy;

R. Wryhrauch, A.I. I.ab. Compmrr Snrnrr Dcpt., Stanford llnivrrsily, Stanford, California 94305.

ThiK rrscarrh is Rupporird (in part) by ihr Advanrrd Research Project Agency of the Office of the Secretary
of Defense (DAHC 15-7;'-C-04.1S).

The views and conclusions conlamcil in ibis ilocumenl arc those of the authors and should not he interpreted
as necessarily representing the official policies, either cipresscd or implied, of the Advanced Research
Project Agency, or the U.S. Government.

Reproduced .n USA. Available from the National Technical Information Service, Springfield, Virginia 22151.

D D C
REG5I?1

DISTHJBUTIOK SIATL'MrNT A

Approved for public releas«;
DistribnÖOB Unlimited

0
J

'< OCT 10 1974

' IkisEinrEi
D

*m wm

LCFsmall

TABI,E OF CONTENTS

1 Inlroduclion

2 Dcsrnplion of LCFMMII

2.1 Inforrncr rnmmands

2.2 Auxiliary rommands

2.3 Mrssaprs from I.CFsmall

2.4 How to uso I.CFsmall

2.5 Knamplrs of proofs

3 Drsrnplirn of ihf program

3.1 The Parser

3.1.1 Scanning primitives

3.1.2 The wff parser

3.2 Top level driver

3.3 Pnntinp routines

3.4 Commands

3.5 Auxi'uiry functions

3.5.1 Prrdirates on free and bound orrgrrenres of variables

3.5.2 Functions used m INCL, CUT, CASKS, SHOW

3.5.3 Conversion and substitution routines

3.6 The Data Structure

References

Appends 1 THK PARSER

1.1 Spe.-ial variables

1.2 Scanner for LCFsmall

1.3 Parsing primitives

1

4

4

8

8

0

12

12

12

13

14

14

>4

15

15

15

15

u

16

19

1<

If

^^"^

LCFsmall

>

1.4 Parser

Appmd.x 2 TOP l.KVKI, ROITINKS

Appendix .1 PRINTING ROITINKS

Appmdi-i \ INFKRKNCK COMMANDS

Apprndi- f. AUXILIARY COMMANDS

Appendix 6 AUXILIARY FUNCTIONS

6.1 Predicale« on Free and Boiind Oerurrences of Vanbles on Term«, Awffg, etc.

6.2 Miseellaneous Functions Used m INCI., CUT, CASKS, SHOW

6.3 Conversion and Suhsliliilion Routines

Appendix 7 MANIPULATION OF THK DATA STRUCTURK

7.1 Constructors

7.2 Selectors

7.3 Predicates

7.4 Miscellaneous Functions

Index

20

23

25

27

34

35

35

36

37

39

39

39

40

-10

42

*kM

LCFsmall

SECTION I Introduction

LCFsmall is a case study. It was designed to shed light on several aspects of current research it ehe
mathematical theory of computation and representation theory. As a side benefit it is a r- ram
which can be used to do experiments using the typed X-calculus to interpret programming ' jages.
This approach was first discussed by D. Scott in 1969 For us it was also an exercise in wr.. ■- such
a system without the aid of the MLISP2 extendible parser (Smith and Enea 1973).

/

LCFsmall is an implementation of a proof-checker for the unadorned logical calculus. LCF itself
augments this basic logic with additional rules and user aids in an attempt to make the actual
checking of proofs more feasible These include the simplification rule, a facility for using theorems,
and the subgoal structure LCFsmall has an entirely different motivation. First, a natural question
about LCF has always been 'hut who checks the checker?", i.e have you proved that LCF is correct?
This task is simply too big to be considered given our present capabilities for proving the
correctness of programs LCF uses backtracking and is about 35 pages of ML1SP2 code. With no
extra free storage, it is a 48K (PDF 10 36 bit word) program We think that is the long run the

^) reliability (or correctness if you wish) of such large programs needs to be considered.

Several things happened to make us look at this task at different levels. First we had learned a lot
about constructing proof checkers while experimenting with LCF and a new cleaned up version was
envisioned Secondly, M. Newey 1974 has presented an LCF axiomatization of LISP, and done
several extremely large proofs This led us to consider the idea of writing a new version of LCF
entirely in LISP, which had some hope of being proved correct. Moreover, using pure LISP
increases its portability. In actual fact it is written and printed here in MLISP2. The translation
into pure LISP, however, is straight forward and we felt this was easier to read. A copy of the LISP
code can be gotten by writing to Richard Weyhrauch

In c.der that a proof of correctness be at all feasible we decided only to include those rules originally
suggested by D Scott in 1960 These are explained in detail in Milner 1972 and Weyhrauch and
Mliner 1972 Tor the purpose of this note we expect familiarity with one of these papers

Another motivation was our interest in seeing just how straightforward it was to translate the
"metamathematical description" of LCF directly into code. That is we tried to write the program in
terms of the notions involved

A tvjical metamathematical description of a logical calculus involves some general inductive
definitions of sprvwes in the language, together with a description of the rules and an inductive
definition of derivations These definitions suggest code directly A reasonable question is is this
"code" usable ana does it do the job, ie. is it correct? The problem of changing inductive
definitions (i.e. most frequently context free grammars of one sort or another) into parsers has been
discussed a lot We do not go into it here One result of this work, however, was the recognition for
a kind of control structure which we would have found very helpful. It is related to the notion of
updaters for data structures (see Hoare 1973).

Consider the following description of substitution of a term I for a variable v, in an expression

'

LCFsmall 2

5uftif(t,v,e) « IF M/w/ord.v.e) THEN rfplace{t.v,t) ELSE •

isfrcejor{[,*,•) z IF atomu{a) THEN true
ELSE IF iscjuanlwfji»)

THEN IF ftounrftwro/UW THEN rriif
ELSE IF boundvaroj(»)i}re(varoj(\)*occuujreein(v,e) THEN/a/;f
ELSE Vx(PARTU).ij/r<'f/or(t,v,x)

ELSE VxtPARTIeln/w/ord.v.x)

occ^rj/rmnCv,«) i IF v«e THEN fru«
ELSE IF «rowicW THEN/«/«
ELSE IF isquantwff'»)*boundvaToJb)*v THEN false
ELSE 3x<PARTS(e).of(:urj/r€#in(v1x)

replace^,*,») • IF VM THEN t
ELSE IF atomicit) THEN 0

. ELSE REBUILD • USING replace^,*,*) FOR x(PARTS(»)
s

This code is almost a direct translation of the first order description of the notions involved.
However, there appear constructs which are not generally available in existing programm ng
languages and are not implementable simply or efficiently by a macro facility.

Consider for example the following four constructs;

VK<AB[X1

3x(Aa[x]
PARTS(e)
REBUILD • USING Fix) FOR x<PARTS(«)

Each of them represents a kind of mapping function on different data structures.

VK<AB[X]

/ is interpreted as; if A is a "set" then for each element of A, bind it to x and evaluate B When you
are finished return the value of the conjunction of the results. In ML1SP2 this function can be
realized by

FOR NEW X IN A DO :AND B[X]

but we do not use this construct in the code below as its translation into LISP 1$ not imr ediate.

3x(AB[x]

is the same as ahovt replacing disjunction for conjunction.

The other two constructs are more difficult as they require a new look at the definition of data
structures. For PARTS(«), the program must be able to d:ide what kind of thing e is, and how to
canomcally take it apart in our ?xample REBUILD retUMS the homomorphic image of • with respect
to replace and the basic constructors of • This type of updating uata structures is considered in
Hoare 1973.

LCFsmall

1

The abov: examples show that the direct translation of metam?fhematics into code requires
programming language features not yet generally available, and show that these features arise
naturally in applications These examples of course do not use assignment statements to "remember"
certain facts and possibly are computed several times, making this code inefficient. We do not
believe, however, that it is too bad This kind of redundant computation can be detected by a
compiler

The code below is a compromise using only those features available in pure LISP, rather than
defining these constructs in LISP and then writing code in terms of them.

In all cases the code has been written abstract syntactically aod 'he actual data structures are not
mentioned The ones we have chisen are found in appendix 7

^

i

^^w

LCFsmall

SECTION 2 Description of LCFsmall

In this section we describe LCFsmall .ind compare it with LCF as described In Milner 1972 In
LCFsmall no restriction has been imposed on the logic, all the inference rules described In Milner
1972, section 2 are included in it. On the contrary, lestnctions have been imposed on the
commands LCFsmall has none of the facilities included in LCF to help the user in making proofs.
It has no subgoaling nechanism, no simplifications facilities, no possibility of declaring axioms and
using theorems Steps of the proofs cannot be labeled, so the only way of referencing them is by
their stepnumber Proofs can only be carried out by a forward deduction without any abbreviation.
In addition, restrictions have been imposed on the syntax of terms. In LCFsmall parentheses can
never be omitted

LCF has no CASES and INDUCT commands, because the corresponding subgoaling tactics are
more useful in making proofs We have included these commands in LCFsmal- stnje it has no
subgoaling mechanism Moreover, LCFsmall has a ALPHACONV command absent in LCF. It is
used for changing names to bound variables This command is not included in LCF, since it
automatically renames conflicting variables.

Section 2.1 Inference commands

In the description of commands, as well as in the code ci rented in the appendices, the following
metavariables will be used:

L, LI, L2... denote stepnumbers,

N, Ml, N2. denote nonnegative integers,

V, VI, V2. denote identifiers,

TRM, TRM1.. denote »erms

AWF, AWF1... denote atomic well formed formulas (awff),

VVF, WFI... denote well formed formulas (wff).

To facilitate the comparison with LCF, commands are listed in the same order as in Milner 1972. As
a general remark, note that commas are never used as delimiters in LCFsmall, blanks are used
instead

Without worrying about the data -tructure (it will be described in 3.6) we note that a LCF proof is a
sequence of steps Each of them is gem rated by one of '.he following commands and it consists of a
stepnumber, a wff (possibly consisting of only one awff), the list of steprumbers it depends upon,
and the reason, i e the command by which it has bt-n obtained.

ASSUME AWF,

generates a new step in the proof The AWF is added to :he proof as a new step depending
on itself

LCFsmall

INCL Li N;

generates a new step whose awff is the N-th awff in the step LI, and whose dependencies are
the same as LI

CONJ LI L2,

the wffs in LI and 12 are umoned and put in a new step whose dependencies are the union
of those of LI and L2.

CUT LI L2.

if LI and L2 are steps in the proof and if each awff appearing in the dependencies of L2
appear in LI, then a new step is generated. Its dependencies are those of LI and its wff is
that of L2;

HALF LI,

If the first awff in LI contains the V symbol, then a new step is generated Its awff is
obtained from the first awff of LI replacing "*" by "«", The dependencies of the new step
are those of LI.

SYM LI,

This command is similar to the previous one In this case the two terms of the first awff in
LI are interchanged.

TRANS LI L2;

If the first awff in LI is of the form TRM1HTRM2 and the first awff in L2 has the form
TRM25TRM3, a new step is generated Its awff is TRM1ETRM3 and its dependencies are the
union of those of LI and L2 If in one (or both) of the above awffs the symbol "c" appears,
then "c" will appear in the new step

APPL LI TPM;

APPL TRM LI;

In the first case, both sides of the first awff of LI are applied to TRM In the second case TRM
is applied to both sides of the first awff of LI. The dependencies of the new step are thoi? of
LI.

ABSTR LI V,

If V is an identifier not occurring free in the dependencies of LI, then a X-abstraction is done
on both terms of the first awff of LI. The dependencies of the new step are those of L!.

CASES LI L2 L3 TRM.

LCFsmall

Given ?■ stepnumbers LI, L2 vid L3 with the same wff, if one of the depcidencies of LI is
TRM-TT, one of the dependencies of L2 is TRM=UU and one of the dependencies of L3 is
TRM^FF, then a new step is gei,crated. Its wff is that of LI and its dependencies are those of
LI, L2 and L3 after having removed the three above dependencies regarding TRM.

INDUCT LI L2 L3 L4 VI;

Given four stepnumbm LI, L2, L3 and L4, if the first awff of LI is a fixpoint definition, i. e.
if it has the form FIX=[o<iG FUN(G)], if the wff of L2 is obtained replacing UU for VI in the wff
of L3, if the wff of L4 is obtained replacing FUN(Vl) for VI in .he wff of L3, and moreover,
L3 appeals in the dependencits of L4, then a new step is generated. Its wff is obtained
replacing FIX for VI in the wff of L3. The command fails if one of the above conditions is
not met or if there is some variable conflict in one of the substitutions. The dependencies of
the new step are the union of those of LI, L2, L3 and L4, minus L3.

CONV LI;

1

CONV TRM,

The conversion command has two forms in the first one it takes a stepnumber LI as
argument In this case, both terms of the first awff of LI are converted and the resulting awff
becomes a rww step in ihe proof. Its dependencies are those of LI. If the argument of CONV
is a term TRM a new -itep without dependencies is generated Its awff is TRMJCONVT(TRM).

CONVT is a function which converts terms. Its definition is given in appendix 6.3.
LCFsmall has no automatic mechanism for changing the names of conflicting bound
variables If there is some variable conflict, X-conversions aren't performed. So the term
[Xy[Xxy(x)]](x) is no- converted in LCFsmall, while it is converted to [Xxl.x(xl)] in LCF.

/

ETACONV TRM;

TRM is etaconverted. Suppose TRM has the form [\x.F(x)] with x not free in F, then a new step
is generated, without dependencies, whose awff is [Xx.F(x)]5F.

ALPHACONV LI VI V2;

ALPHACONV TRM VI V2;

If the first argument of ALPHACONV is a stepnumber LI, then VI replaces V2 in its first
bound occurrence In the first awff of LI. The resulting awff is put in a new step whose
dependencie' are those of LI If the first argument is a term, then a new step is generated,
without dependencies Its awff is TRM'TRMI, where TRM1 is obtained from TRM by replacing
VI for V2 in its first bound occurrence.

EQUIV LI L2;

Given two step numbers LI and L2 if the first awff of LI has the form TRMIcTRM2 and the
first awff of L2 nas the form TRM2cTRMl, then a new step is generated. It: awff is
TRMI»TRM2 and its dependencies are the union of those of LI and L2.

^^

LCFsmall

REFL1 TRM;

REFL2TRM,

The first command generates a new step whose awff is TRM=TRM, without any dependency.
The awff generated by the second command i' TRMcTRM.

MINI TRM;

MIN2TRM

In the first case a new step is generated, without dependencies, whose awff is UUcTRM. In the
second case the awff is UU(TRM)iUU.

CONDT TRM;

> If TRM has the form TT-»TRM11TRM2 then CONDT generates a new step whose awff is
TRM=TRMI with no dependency.

CONDF TRM,

if TRM has the form FF-*TRM1,TRM2 then CONDF generates a new step whose awff is
TRM=TRM2 with no dependency.

CONDU TRM;

If TRM has the form UU-*TRM1,TRM2 then CONDU generates a new step whose awff is
TRMiUU with no dependency

FIXP LI;

If the first awff in LI is a fixpomt definition, re. If it is of the form FIXs[odG.FUN(G)], and if
FIX may be substituted for G in FUN(G) without variable conflicts, then a new step is
generated Its awff is FIXiFUN(FIX) and its dependencies are those of LI.

SUBST LI OCC NIN L2;

SUBST LI OCC NIN TRM,

SUBST has two forms In the first one, if the first awff of LI is TRM1>TRM2, then TRM2 is
replaced for the Nth free occurrence of TRM1 in the firt awff of L2. The resulting awff is put
in a new step, whose dependencies are the union of those of LI and L2.

In the second form the command SUBST operates on a TRM. If the above hypotheses hold
for LI, a new step is generated. Its dependencies are those of LI and its awff is
TRM^SUBSTTT(TRM1,TRM21TRM1N) The function SUBSTTT. defined in append-x 6.3.
substitutes TRM2 for the Nth free occurrence of TRM1 in TRM.

^

I

LCFsmall ö

Section 2.2 Auxiliary commands

Besides the commands for carrymg out deductions. LCFsmall has the followmg commands;

SHOW UNE LI;

SHOW LINE LI: L2,

In the first case the step LI is printed. In the second case all the steps between LI and L2 are

printed

FETCH FILENAME,

All the LCFsmall commands contained in the file FILENAME are executed Each command
is treated exactly as if typed at tne console So the user may prepare all the commands on a
file and then generate a proof by fetching this file.

CANCEL,

CANCEL LI.

In the first case the last step in the proof is deleted. In the second case all the steps from the
last one to LI (included) are deleted, if LI is less or equal to on-, the entire proof is cancelled!

Section 2.3 Messages from LCFsmall

The following list mclndes all the messages printed by LCFsmall:

SYNTAX ERROR; TRY AGAIN

This is printed whenevei a command is improperly typed.

NASTY COMMAND

This error message is printed by any command whenever it cannot be executed because some
condition isn't satisfied For instance, if you are trying to FIXP a nonexistmg step or a step whose
first awff is not a rtxpuM definition you will get NASTY FIXP.

THE LAST LINE IN THE PROOF IS N

YOU HAVE DEMOLISHED YOUR PROOF

One of the above sentences is the answer of the system after executing a cancel command.

You may also obtain something like

3246 ILL MEM REF FROM ATOM

LCFsmall

If you have messed up something w.th LISP' However this shoudn't hapnen

Section 2.4 How to use LCFsmall

If you want to prove somethmg use LCF Anyway, if you really want to use LCFsmall type;

R LCFSML

you are at LISP level and you will get a star If you type

UNIT)

you H get some stars and then you are ready to prov To Mft< a proof type

t

You'll receiv t the message END OF PROOF Now you are again at LISP level Typing

(RESUME)

will make you to go on with the old proof If you want to start a new proof, type

UNIT)

Your core image may be saved tor later use by the comrrand

TC
SAVE FILENAME

/

Section 2.5 Examples of proofs

Two sample LCFsmall proofs are given here They concerns the CASE and INDUCT commands.
The corresponding LCF proofs arc very different. In fact, they are done using the subgoalmg

mechanism

The first statement we have proved is the following property of conditional expressions;

^ptHIPWHCIjClMWHCI^tMMWHClW

All the commands have been typed in the file TSTCS They are.

CONOT (TT-^PW-CimWXHCl^));
CONDU (UU-»(P(X)-»C1 ,C2),(P(XHC1,02));
C0N0U (UU-»CI1C2);
CONDF (FF-*(P(X)-»C1.C2),(P(XHC1,C2));
SYM 3*
SUBSl's OCC 2 IN 2;

j

*M

LCFsmall 10

ASSUME P(X)=TT;
ASSUME P(X)=UU;
ASSUME P(X)iFF;
SYM 7;
SYM 8;
SYM 9;
SUBST 10 OCC 1 IN 1;
SUBST 1 1 OCC I IN 6;
SUBST 11 OCC 1 IN 14;
SUBST 12 OCC 1 IN 4;
CASES 13 15 16 P(X);

The file is then fetched and the proof is done Th« printout of LCFsmall is

R LCFSML
(INIT)
FETCH TSTCS;

****! (TT-*<P(XHC:.t:2),(P(X)-»Cl1C2))MP(XHCl1C2)
****2 (UU-»(P(X)-*C1IC2),(P(X)-»C1,C2))'UU
***«3 (UU-»CllC2)iUU
*«**4 (FF->(P(X)-»C1IC2),(P(XHC11C2))MP(X)-»C1,C2)
**#*5 UU:(UU-»C11C2)
**^*6 (UU^(P(X)-»CI,C2).|P(XHC1,C2))=(UU-»C11C2)
****7 P(X)»TT (7)
*«**8 P(X)=UU (8)
****9 P(X)-=FF (9)
****10 TT=P(X) (7)
#***11 UU-P(X) (8)
*»**12 FF^PIX) (9)
««13 (P(X)-»(P{X)-»Cl,C2)1(P(X)-»CllC2))ä(P(XHCl,C2) (7)
****14 (P(XH{P(X)-»Cl1C2)1(P(XHCl1C2))i|UU-»Cl1C2) (8)
«***15 (P(X)-»(P(X)-»Cl,C2),(P(X)-.Cl,C2))i|P(XHCl1C2) (8)
****16 (P(X)-»(P(X)-»Cl,C2),(P(X)-»Cl,C2))s|P(X)-»01,02) (9)
«*«*17 (P(X)-»(P|X)-»C1>C2),(P(X)-»C1,C2))«(P(X)-»01IC2)

END OF PROOF
NIL
*TC
tc

The next example is taken from Milner 1972. section 3 1. The statement to be proved is;

FcG ASSUME Fi[oiF FUNiF)]. G=FUN(G)

The commands, typed in the file TSTIND are:

ASSUME F.[«:F FUN(F)];
ASSUME GHFUN(G);

ASSUME FlcG;

/

riA

LCFsmall 11

MINI G;
APPL FUN 3;
SYM 2;
SUBST 6 OCC 1 IN 5;
INDUCT 1 4 3 7 Fl;

The printout of LCFsmall is;

R LCFSML
(INIT)
FETCH TSTIND;

♦ + *+l
««««2
m j(t ^c)|(_.

*#**4
****5
****6
****7
" " V ^O

F^(^FFUN(F)) (1)
G=FUN(G) (2)
FlcG (3)
UUcG
FUN(FI)cFUN(G) (3)
FUN(G)=G (2)
FUN(Fl)cG (2 3)
FcG (1 2)

END OF PROOF
NIL
*TC
:c

The length of the two above LCFsmall proofs is comparable with that of their corresponding LCF
proofs However, as soon as the proof becomes more complex and a considerable amount of
substitutions and conversions hav^ to be done, the subgoaling mechanism and -more important- the
simplification algorithm of LCF become vital.

mm

LCFsmall 12

SECTION 3 Description of the program

The MLlbP2 program for LCFsmall is com|iletely listed in the appendices I through 7. In the
lollowmg sections, the various components of the program are described They are:

1) parser
2) top level driver
?■) printing routines
4) commands
b) auxiliary funct-ons
6) functions manipulating the data structure

Section 3.1 The Parser

3.1.1 Scanning primitives

This code implements a backipable manner it uses an array, TSTACK, to store "tokens" as they
are scanned Actually the scanner returns both a type and a value, where "value" is ehe atom
scanned and "type" is;

IDENT if the .'alue is an identifier
NUMBER if the value is a number
DEL if the value is a delimiter

Two global vanab'^s are used to keep track of what token we are looking at m the input stream.
They are PC and ENDSTACK PC points into TSTACK at the place the LCFsmall scanner is
looking ENDSTACK is the last location in TSTACK that has been filled from the current input.
TSTACK is necessary because scan destroys the input s'ream, and the LCFsmall parser, being top
down, needs to back up over the input The main accessing routine for TSTACK is the function
tstack which calls sc«n if not enough tokens have been read

scan(): returns a pair consisting of the token scanned and its type.

setupO: sets PC-0 and ENDSTACK-O and declares the array TSTACK

token, simply advances the LCFsmall scanner

tokenvO: advances the scanner and returns the value of the new thing p™nfr\ to.

tokentO: advances the scanner and .eturns the type of the new thirg pointed to.

tsiacMn): finds the nth element of TSTACK. if its not .here it calls »can until it is

p«ekv(n): returns the nth token ahead of PC.

p««kt(n): returns the type of the nth token ahead of PC.

*M

1
1

LCFsmall 13

flushO: starts the LCFsmall scanner over by setting PC=0 and ENDSTACK=0

nextv(x): reuirns T if the value of the next token is x, NIL otherwise

n«x»(x): returns T if the type of the next token is x, NIL otherwise.

The function scan was not written with efficiency in mind It uses ordinary LISP functions whose
properties we know about This is because we hope someday to prove the correctness of this
program Note that the only functions not defma 'e in pure LISP are READL1ST, ASCII, TYI,
and TSTACK. Arrays could easily be eliminated in frvor of lists. The array TYPE stores the type
of a character, 0 for letters. I for digits, 2 for delimiters, 3 for characters to be ignored when
building tokens (like form feeds). The special global variables can be eliminated from the code in

favor of puie LISP in the standard way

3.1.2 The wff parser

Rather than describing everything in detail we will explain the parser by explaining some examples.

Consider

EXPR TERMO;
BEGIN NEW START.REP.X.Y^TART-PC;
IF X^SIMPLTERMO THEN REP-X ELSE RETURN NIL;

A; START-PC;
IF LPAR()A(Y-TERM,))ARPAR() THW REP-riAPPLY CONS REP CONS Y) ALSO GO A;
PC-START;
RETURN(REP);END;

The local variable START is to remember where the global variable PC was pointing when the
function was entered, le START-PC The convention for a parsing function is that either it exits
successfully with a non NIL value and leaves PC pointing to the next token to be looked at or it
returns NIL and leaves the value of PC as it was when the function was entered. The code

IF X-SIMPLTERM() THEN REP-X ELSE RETURN NIL;

checks if a SIMPLTERM is scanned In this case REP gets it as a value If not (by our convention)
SIMPLTERM returns NIL. and PC is Irft as it was. so TERM returns NIL and PC remains unchanged.
If we have found a SIMPLTERM, TERM has succeeded and we enter a loop, update the place in the
input stream we backup to when we exit TERM and look for repetitions of a left parenthesis (LPAR),
followed by e TERM, followed by a light parenthesis (RPAR)

A; START-PC;
IF LPAR()A(Y-TERM())ARPAR() THEN REP-CriAPPLY CONS REP CONS Y) ALSO GO A;

After each successful repetition REP gets the internal representation of an application term, i.e.
F(x)-»(APPLYI F x) When the loop test eventually fails we restore PC and return the term stored in

REP

Section 3.2 Top level driver

]

i

LCFsmall 14

LCFsm.ill is started by the IN1T function This and the other top level functions are listed in
appendix 2 INIT sets the base for numbers to 10, initializes the scanner and then initializes the
proof PROOF, the global variable which keeps record of the proof, is ser to NIL and PFLENGTH,
the proof length, is set to 0 Then RESUME is called. It takes into account the foCt that the input
commands may be read from the console or from a fetched file. It calls the function LCFPROOF
which builds up the proof by a rrflu fxecute-iurite loop.

LCFPROOF makes a test on the content of the input buffer. If its first character is 8, then an end
of proof message is typed and the proof is stopped. If a command is parsed and executed the loop
goes on. The function LINE controls the execution of LCF commands. After a command has been
successfully parsed and executed, if the value returned is a proof step, then it is added to the proof.

If none of the expected command is paised, the input buffer is scanned by the function BADLINE
until the first semicolon is met. Then an error message is printed.

Section 3.3 Printing routines

The printing routines are listed in appendix 3, They depend on the internal representation of terms,
awffs, wffs and proof steps, which is described in section 3.6.

PRINTAWFF is the printing routine for terms and awffs. They are transformed from the internal
prefix form to a parenthetized form

PR1NTMES prints messages, it takes the string to be printed as argument. PRINTM is used to
print a message when some steps in the proof have been cancelled. The string to be written is fixed,
the argument of PRINTM is the proof-length after the cancellation.

PR1NTNEWLINE prints the newly generated line, whenever a command is successfully executed.
The stepnumber, the wff and its dependencies are printed. PRINTLINE is like PRINTNEWLINE,
but it may print any step in the proof not necessarily the last one. It prints also the reason of the

step

PRINTLST is an auxiliary printing routine which prints a list of awffs separated by blanks

Section 3.4 Cominands

Thf commands are shown in appendices 4 and 5. TI ey are listed in the same order as they are
desenbd in sections 2 1 and 2.2. Every command is realized by two functions. The first one performs
a check on the syntax of the input sentence If the expected command is successfully parsed then the
conesponding semantic function Is called, otherwise the pointer is restarted in the input buffer. This
allows the input sentence to be tested again to see if we are faced with another command or if there
is a syntax error in the input Each semantic function performs a series of tests to see whether or not
the conditions for the applicability of the corresponding rule are met. In this case it returns a new
step to be added to the proof, otherwise it returns the message NASTY COMMAND.

We think that all the syntactic and semantic functions realizing the LCFsmall commands are
sufficiently clear, after having read the description of the commands given in sections 2.1 and 2.2.

LCFsmall 15

Section 3.5 Auxiliary funciioiu

The auxiliary functions and predicates used in defining the commands are listed in appendices 6
and 7 Appendix 7 contains the predicates and functions directly dealing with the data structure,
they will be described in the next section The functions and predicates listed in appendix 6 have
been dr-'ided into three groups and will be discussed in the three following subsections.

3.5.1 Predicates on free and bound occurrences of variables

NOTBNDVT(V,TRM) is a predicate true if V has no bound occurrences in TRM. BOUNDV is its
negation

NOTFRVT(V,TRM) is a predicate true if V has no free occurrences in TRM. FREEV is its negation.

NOTFREVWO/.WF) is true if V has no free occurrences in the wff WF. NOTFREE^.LN) is true if
V doesn't occur free in the wffs associated with the stepnumbers in the list LN

I$FREEFORT(X1V,TRM) is true if X (a term or a variable) may be substituted for V in the term TRM
without conflicts of bound variables iSFREEFORW(X,V,WF) is the analogue for wffs.

3.5.2 Functions used in INCL. CUT, CASES. SHOW

The functions described In this section are listed in appendix 6.2.

PICKUP is used in the command INCL for selecting the n-th awff in a wff.

1NCLTEST(LN,WF) uses TESTM It is used in CUT to check if every wff associated with the
stepnumbers m the list LN appears in WF.

TESTCASES and TESTC are used in testing the applicability of the cases rule. FIND and
REMOVE are used in building up the dependency part of the step generated by the CASES

command.

OFT is used in the SHOW command to parse an optional part in the input string.

3.5.3 Conversion and substitution routines

The conversion and suostitution routines are listed in appendix 6.3.

CONVT(TRM) performs all the possible lambda-conversions on TRM. If it is an identifier, no
conversion can be done If it is composed of various parts, then the conversion ,, recursively done
on them If it is an application term, then tests are performed to see if ^ convtision can be done and
if the resulting term can be further converted.

SUBSTG(TRM,X,V1) is the "general" substitution routine. X, a variable or a term, replaces VI in all its

*m

LCFsmall 16

J>

i

/

free occurrences, in TRM A test is done on TRM and X is recursively substituted In all the components
of TRM. Wl^en faced with a lambda term 01 a mu-term a test is done to detect conflicts of variables.

ACONV(TRM,V1,V2) portorms an alpha-convemon on TRM. VI replaces V2 in its first bound
nonconflicung occurrente.

SUBW(AWF11AWF2,N) »s an iuixliary function used in the command SUBST, when it is applied to
vo Itepnumbert. AWF1 is the awff in which the substitution takes place. The term at the left hand

side of AWF2, denoteH JS TPM1, replaces the term at the right hand side of AWF2, denoted as TRM2,
in its Nth occurrence Th3 global variable SUBCOUNT is set to N, it will mark the occurrence
where the substitution mus: be done The substitution is first attempted on the term at the left hand
side of AWF1. If not performed ihere, then it is attempted in the term at the right hand side of
AWF1

SUBSTTT(TRMI1TRM2,TRM21N) is used by the command SUBST when its last argument is a term.
TRM2 replaces TRM3 in its N-t! occurrence in TRM1.

DOSUBST(TRMl)TRM21TRM3,i :« the auxiliary function that performs the substitution of TRM2 for
TRM1 in TRM1. A test is done on I«M1 ^nd the substitution is recursively attempted on its various
parts. SUBCOUNT is decremented whenever an occurr nee is found and, when its value is 0 the
substitution takes place Occurrences where conflicts arise among variables are not counted.

Section 3.6 The Data Structure

All the functions directly manipulating the data structure are listed in appendix 7.

In appendix 7.1 all the consUMCton are listed. By constructor we mean a function that assembles
structured data.

MKCONDTERM. MKAPPLTERM, MKLAMBDATERM and MKMUTERM define the internal
representation of terms. They are represented as LISP S-expiessions whose fust element denotes the
nature of the term and is followed by the components cf the term. Awffs are assembled by
MKAWFF, They are S-expiessions whose first element is the relation symbol ■ or c. MKVVFF
assembles wffs of just one awff In general wffs may be lists of more than one awff. For instance
those produced by the function UNIONW (see appendix 7.4) used in the command CONJ.

The proof is represented as a list, initially it is set to NIL. Each step is added to this list by the
function ADDLINE (see appendix 74) and is assembled by the constructor MKPROOFSTEP.
Proof steps have the form of a list of three elements: a wff, a list of dependencies and a reason
assembled by the constructor REASON The function ADDLINE puts the stepnumber in front of
each proof step

Appendix 7.2 contains the list of all the ielectors used in retrieving the various components of the
terms, awffs and the proof.

Appendix 7.3 contains a list of predicates used m the program. These predicates are tests on the
nature of terms, awffs etc.

/

1

LCFsmall 17

Some miscellaneous functions are listed in appendix 71: UNIONOF is the set theoretic union for
lists of numnbers, UNIONW is the set theoretic union for wffs, manely for lists of awffs. ADDLINE
(see above) increments the variable PFLENGTH (proof length) by I and adds a new step to the
proof. SEARCH is used to search steps in the proof, LNT gives the length of a list, and finally
SUBWV(WF,X,V) substitutes X for each occurrence of V in WF, It is used in the command INDUCT.

%

^r 1

LCFsmall 18

REFERENCES

-

Hoare, C AR,
1973 Recursive Data Structioe

Artificial Intelligrnce Memo No. 223, Stanford UmverMty (1973).

Milner, R.,
1972 Logic for computable Junctions, description of a machine implementation

Artificial Intelligrnce Memo No. 169, Stanford University (1972).

Newey, M.,
1974 forma/ Semantics of LISP with Applications to Program Correctness

Forthcoming Ph D. Dissertation, Stanford University. 1974.

Smith, DC. and Enea H J ,
1973 MLISP2

Artificial Intelligence Memo No 195, Stanford University (1973).

Weyh.auch, R W. and Milner, R ,
1972 Program Semantics ami Correctness in a Mechanized Logic.

Proc. 1st USA-Japan Computer Conf., Tokyo (1972).

I

.^»

mm

LCFsmall 19

APPENDIX 1

THE PARSER

J

1.1 Special varhDles

PC
ENDSTACK,
PROOF,
PFLENGTH,
SUBCOUNT;

1.2 Scanner for LCFsmall

EXPR readlisUX;;
READLIST(AlCII(OCTAL 57) CONS X);

EXPR scan(:X);
IF EO(X-TYPE(CHAR),0) THEN idscanl)
ELSE IF E0(X,1) THEN nuMscanO
ELSE IF EQiX^) THEN d*lscan()
ELSE CHAR«-TYI() ALSO scan();

EXPR idscanO;
BEGIN NEW TOKEN.X;
TOKEN»-<ASCII(CHAR)>;

A; IF EQ(X«-TYPE(CHAR-TYI()),0)vEO(X)l)
THEN TOKEN-ASCIKCHAR) CONS TOKEN ALSO GO A;

RETURN(readlist(REVERSE(TOKEN)) CONS 'IDENT); END;

EXPR numscanO;
BEGIN '^W TOKEN;
TOKEN»-<ASCII(CHAR)>;

A; IF EO(TYPE(CHAR«-TYI()),l)
THEN TOKEN»-ASCII(CHAR) CONS TOKEN ALSO GO A;

RETURN{readlisUREVERSE(TOKEN)) CONS 'NUMBER); END;

EXPR delscanO;
BEGIN NEW TOKEN;
TOKEN-<ASCII{CHAR)>;
CHAR-TYK);
RETURN(r«adlist(TOKEN) CONS ,DtL);END;

EXPR selupO;
BEGIN NEW X;
ARRAYCTYPE.SS.CONSW,^?));
ARRAYrrSTACK.T.CONSCO.SOO));

«M

4J

LCFsmall 20

FOR X-O TO 127 DO TYPE(XK2;
FOR X«-OCTAL 011 TO OCTAL 015 DO TYPE(X)«-3;
FOR X-OCTAL 060 TO OCTAL 071 DO TYPE(X)-I;
FOR X-OCTAL 101 TO OCTAL 132 DO TYPE(XH);
FOR X-OCTAL 141 T3 OCTAL 172 DO TYPE(X)-0;
TYPE(OCTAL 040)-3; TYPEIOCTAL 175)-3; TYPE(OCTAL 177)-3; END;

1.3 Parsing primitives

EXPR tokenO; PC-PC^l;

EXPR toKenv(); CAR tsfack(PC-PC»l);
EXPR fokenU); CDR tslack(PC-PC*l);

EXPR istack(N);
IF ENDSTACK LESSP N
THEN FOR NEW I-(ENDSTACK>1) TO N DO TSTACK|l)-sean()

ALSO ENDSTACK-N
ALSO TSTACK(N)

ELSE TSTACK(N);

EXPR pe«kv(N); CAR Ulaek(PC«N);
EXPR peeMIN); CDR tstacMPC'N);

EXPR flushO; BEGIN PC-0; ENDSTACK-0;END;

EXPR nextv(X); EQ(X,CAR tstack{PC»l));
EXPR nextt(X); EQCX.CDR htack(PC«l));

1.4 Parser

EXPR TERMO;
BEGIN NEW START.REP.X.Y-.START-PC;
IF X-SIMPLTERM() THEN REP-X ELSE RETURN NIL;

A; START-PC;
IF LPAR()A(Y-TERM())ARPAR()

THEN REP-(7!APPLY CONS REP CONS Y) ALSO GO A;
PC-START;
RETURN(REP);END;

EXPR CONDTERMO;
BEGIN NEW START.X.Y.Z; START-PC;

LCFsmall 21

1

IF LPAROAIX-TERMOIARARROWOAIY-TERMOIACOMMAOAIZ'-TERMOIARPARO

THEN RETURN(7IC0ND CONS X CONS Y CONS Z);
PC*-START;END;

EXPR LAMBDATERMO;
BEGIN NEW START.X.Y; START-PC;
IF LSOBRACKET()Alambda()A(X>-lDENT())APERIOD()A(Y-TERM())ARSQBRACXET()
THEN RETURN(7ILAMBDA CONS X CONS Y);

PC<-START;ENO;

EXPR MUTERMO;
BEGIN JEW START.X.Y; START-PC-
IF LS^ «Add ;)AMU()A(X-IDENT())APERIOD()A(Y-TERM())ARSQBRACKET()

THEN »RTURWI 7IMU CONS X CONS Y);
PC-STA^T^ND;

EXPR SIMPLTERMO;
BEGIN NEW START,X;START-PC,
IF (XHDENTO) v

(X-CONDTERM()) v
(X-LAMBDATERM()) V
•;X-MUTERM()) v
(LPAR()A(X-TERMf))ARPAR())

THEN RETURN X;
PC-START^ND;

EXPR AWFF()-

BEGIN NE». START.X.R.Y; START-PC;
IF (X-TERM())A(R-REL{))A(Y-TERM())

THEN RETURN(R CONS X CONS Y);
PC-START;END;

EXPR WFFO;
BEGIN NEW START.REP.X^TART-FC;
IF X-AWFF() THEN REP-<X> ELSE RETURN NIL;

A: START-PC;
IF COMMA()A(X-AWFF()) THEN REP-<X>oREP ALSO GO A;
PC-START;
RETURN(REP);ENO;

EXPR IDENTO; IF EQ(peeKUl),'IDENT) THEN tokenv() ELSE NIL;
EXPR NUMBERO; IF EQlpeekKD/NUMBER) THEN VALUE(tokenv()) ELSE NIL;
EXPR RELO; IF nextvCr^vnextvCrc) THEN tckonvO ELSE NIL;
EXPR CHECK(X); IF nexlv(X) THEN foken() ELSE NIL;
EXPR SCO; IF nexWC?;) THEN tokenO ELSE NIL;
EXPR LPARO; IF nexM'TO THEN tokenO ELSE NIL;
EXPR RPARO; IF nextvC')) THEN 1oken() ELSE NIL;
EXPR RARROWO; IF nextvC?-») THEN tokenO ELSE NIL;
EXPR COMMAO; IF nextvC?,) THEN tokenl) ELSE NIL;
E*PR COLONO; IF nexlvC?:) THEN tokenl) ELSE NIL;
EXPR OOLLARO; IF nexM'TJ) THEN tokenO ELSE NIL;
EXPR PERIODO; IF nextvC?) THEN tokenO ELSE NIL;
EXPR LSQBRACKETO; IF nextv("?[) THEN tokenO ELSE NIL;
EXPR RSQBRACKETO; IF nextvC?]) THEN tokenl) ELSE NIL;

LCFsmall 22

EXPR lambd.O; IF n.xM'TX) THEN token() ELSE NIL;
EXPR MUO; IF nMlvC?^) THEN lokenl) ELSE NIL;

EXPR VALUE(X);
(READLIST(CDR(EXPLODE X)));

tr

•

*^^

LCFsmall 23

APPENDIX 2

TOP LEVEL ROUTINES

EXPR INIT();
BEGIN
LISPINITO;
SCNINITO;
LCFINITO;
END;

EXPR LISPINITO;
BEGIN
?«NOPOINT«-T;
BASE-10;
IBASE -10.;
END;

EXPR SCNINITO;
BEGIN
CHAR - 40;
PC-1;
ENDSTACK-O;
setupO;
END;

EXPR LCFINITO;
BEGIN
PROOF-NIL;
PFLENGTH - 0;
RESUMEO;
END;

EXPR RESUMEO;
BEGIN NEW X;

A; X-ERRSET(LCFPROOFO);
IF EQCX/riECF?!) THEN INC(NIL1T) ALSO flush() ALSO GO A;
END;

EXPR LCFPROOFO;
BEGIN

A; PRINC(TERPRI("****"));
IF DOLLAR!) THEN PRINTMESC'END OF PROOF")

ALSO flushO
ALSO RETURN(PRINCr "));

IF LINEO v BADLINEO THEN fluth() ALSO GO A;
END;

EXPR LINEO;
BEGIN NEW NC;
IF (NC-FETCH()) v (NC-SHOWO) v (NC-CANCELO) THEN RETURN(NC);
IF (NC-ASSUMEO) v (NC-INCLO) v

(NC-REFLIO) v (NC-REFL2()) v

MM

r wmm

LCFsmall 24

t

(NOMINIO) v (NC«-MIN2()) v
(NC*-ALPHACONV()) v(NC-SUBST()) v
(NOABSTRO) v (NC«-FIXP()) v
(NOCONDTO) v (NC»-C0NDF()) v
(NC-CONDUO) v (NOEQUIVO) v
(NC-HALF()) v (NOSYMO) v
(NC-TRANSO)v (NC-APPLO) v
(NC-C0NJ()) v (NC*-CUT()) v
(NOCASESO) v (NC-INDUCT{)) v
(NC- CONVO) v (NC-ETACONV())

THEN (IF ISLINE(NC) THEN ADDLINE(NC) ALSO PRINTNEWLINEO);

RETURN (NC);
END;

EXPR BADLINEO;
BEGIN

A- IF -nexlvC?;) THEN token() ALSO GO A;
PRINTMES("SYNTAX ERR0R;TRY AGAIN");
RETURN (PRINCr "));
END;

I

,

^

LCFsmall 25

APPENDIX 3

PRINTING ROUTINES

EXPR PRINTAWFF(AWF);
BEGIN NEW CR;
IF ATOM(AWF) THEN RETURN PRINC(AWF);
CR-CAR(AWF);
IF EQ^R.'TH) v EQ^R.'Tc)
THEN BEGIN PRINTAWFF(CADR AWF);

PRINC(CR);
PRINTAWFF(CDDR AWF); END;

IF EO(CR,,?!APPLY)
THEN BEGIN PRINTAWFF(CADR AWF);

PRINC('7();
PRINTAWFF(CDDR AWF);
PRINCC?)); END;

IF EQ^R.^ICOND)
THEN BEGIN PRINC(,?();

PRINTAWFF(CADR AWF);
PRINCC7-»);
PRINTAWFF(CADOR AWF);
PRiNCC?,);
PRINTAWFF(CDDDR AWF);
PRINCC?)); END;

IF EO(CR,',!LAMBDA)
THEN BEGIN PRINCC?[?X);

PRINTAWFF(CADR AWF);
PRINCC?);
PRINTAWFF(CDDR AWF);
PRINCC?]); END;

IF ECHCR/'IMU)
THEN BEGIN PRINCC?r?oc);

PRINTAWFF(CADR AWF);
PRINCC?);
PRINTAWFF(CDDR AWF);
PRINCC?]); END;

END;

EXPR PRINTMES(X);
TERPRI{PRINC{TERPRI(X)));

EXPR PRINTM(N);
BEGIN
PRINC(TERPRIC'THE LAST LINE IN THE PROOF IS: "H;
RETURN(TERPRI(PRINC(N)));
END;

EXPR PRINTNEWLINEO;
BEGIN NEW X;
X*-PROOF[l];
PRINC(X[I]); IF (X(1]>I0) THEN PRINCC ") ELSE PRINCC ");
PRINTLST(X[2]); PRINCC" M);
RETURN PRINCdF NULL(X[3)) THEN " " ELSE X[3]); END;

_■

^^■r-

LCFsmall 26

>

EXPR PRINTLINE(X);
BEGIN
PRINC(X[1]); IF (X[i]>10) THEN PRINCf ") ELSE PRINCC ");
PRINTLST(X[2]); PRINCC ");
PRINCdF NULL{X[3)) THEN " " ELSE X[3]); PRINCC ");
IF AT0M(X[4]) THEN RETURN PRINC(X[4]) ELSE RETURN PRINTLST(X[4]);
END;

EXPR PRINTLST(X);
IF NULL(CDR X) THEf; PRINTAWFF(Xri]) ELSE
BEGIN PRINTAWFF(X[1]);

PRINCC ");
RETURN PRINTLST(CDR X);END;

mm

LCFsmall 27

APPENDIX 4

INFERENCE COMMANDS

EXPR ASSUMEO;
BEGIN NEW AWF,ST/> U; START-PC;
IF CHECKCASSUME) A (AWF-AWFF()) A SCO
THEN RETURN ASSUMESEM(AWF); PC-START;

END;

EXPR ASSUMESEM(AWF);
MKPROOFSTEP(<AWF>,<PFI.ENGTH • D.'ASSUME);

EXPR INCLO;
BEGIN NEW LI.N.START; STAh'T-PC;
IF CHECK('INCL) A (Ll-NUMBERO) A (N-NUMBER()) A SCO
THEN RETURN INCLSEMdl.N); PC-START;

END;

EXPR INCLSEM(L1,N :WF);
IF ISPROOFSTEP(Ll) AlSINCLIN.WF-WFFOFai))

THEN MKPROOFSTEPIPICKUPCWF.Nl.DEPOFan.REASONCINCL/LI.N»)
ELSE PRINTMESC'NASTY INCL");

EXPR CONJOs
BEGIN NEW Ll.i-Z.START; START-PC;
IF CHECM'CONJ) A (Ll-NUMBERO) A (L2-NUMBER0) A SCO
THEN RETURN C0NJSEM(L11L2); PC-START;

END;

EXPR C0NJSEM(L1,L1);
IF ISPROOFSTEP(LI) A ISPROOFSTEP(12)
THEN MKPROOFSTEP(UN10NW(WFFOF(LI))WFFOF(L2)),

UNIONOF(DEPOF(L 1)(DEPOF(L2))1

REASON('CONJr<Ll1L2»)
ELSE PRINTMESC'NASTY CONJ");

EXPR CUTO*
BEGIN NEW LI ,L21START;START-PC;
IF CHECKCCUT) A (Ll-NUMBERO) A (L2-NUMBERO) A SCO
THEN RETURN CUTSEM(Ll1L2)i PC-START;

END;

EXPRCUTSEM(L1.L2);
IF ISPROOFSTEP(Ll) A ISPROOFSTEP{L2) A INCLTEST(DEPOF(L2),WFFOF(Ll))

THEN MKPROOFSTEP(WFFOF(L2),DEPOF(Ll j.REASONCCUT/Ll^»)
ELSE PRINTMESC'NASTY CUT*);

EXPR HALFO;
BEGIN NEW LI,START; START-PC;
IF CHECKCHALF) A (Ll-NUMBERO) A SCO
THEN RETURN HALFSEM(Ll); PC-START;

END;

^»

LCFsmall 28

EXPR HALFSEM(L1 :AWF);
IF ISPROOFSTEP(Ll) A ISE0UIVAWFF(AWF^AWFF0F(L1))

THENMKPROOFSTEPlMKWFFCrc.FSTERMOFtAWFj.SNTERMOFtAWF^.DEPOFai),
REASONCHALF^Ll»)

ELSE PRINTMESC'NASTY HALF");

EXPR SYMO;
BEGIN NEW LI,START; START-PC;
IF CHECKCSYM) A (L1-NUMBER()) A SCO
THEN RETURN SYMSEMLI); PC<-START;

END;

EXPR SYMSEM(L1 :AWF);
IF ISPROOFSTEPILD A ISE0UIVAWFF(AWF«-AWFF0F{L1))

THENMKPROOFSTEPlMKWFFCT^SNTERMOFiAWFKFSTERMOFiAWFaDEPOFai),
REASONCSYMAl»)

ELSE PRINTMESC'NASTY SYM");

EXPR TRANSO;
BEGIN NEW L1,L2)START;START'-PC;
IF CHECK('TRANS) A (Ll-NUMBERO) A (L2-NUMBER()) A SCO
THEN RETURN TRANSSEM(L!1L2); PC-START;

END;

EXPR TRANSSEM{LI,L2 :AWF| ,AWF2,REL);
IF ISPROOFSTEP(Ll) A ISPROOFSTEP(L2)

A EQUAL(SNTERMOF{AWFl-AWFFOF(Ll))lFSTERMOF(AWFi:-AWFFOF(L2)))
THEN (IF ISEOUIVAWFF(AWFl) A 1SE0UIVAWFF(AWF2)

THEN REL - [*?•) ELSE REL - (7c))
ALSO MKPROOFSTEP(MKWFFiREL,FSTERMOF(AWFl),SNTERMOF(AWF2))(

UNIONOF(DEPOF(Ll),DEPOF(L2)),
REASONCTRANS/Ll^»)

ELSE PRINTMESC'NASTY TRANS");

EXPR APPLO*
BEGIN NEW Ll.TRM.START: START-PC;
IF CHECKCAPPL) A (TRM-TERM()) A (Ll-NUMBERO) A SCO

THEN RETURN APPLSEM1 (TRM,L1); PC-START;
IF CHECKCAPPL) A (Ll-NUMBERO) A (TRM-TERM()) A SCO

THEN RETURN APPLSEM2(L1ITRM); PC-START;
END;

EXPR APPLStMl(TRM.Ll:AWF);
IF ISPROOFSTEP(Ll) THEN
MKPROOFSTEP(MKWFF(RELOF(AWF-AWFFOF(L1)),MKAPPLTERM(TRM,FSTERMOF(AWF)),

MKAPPLTERM(TRM1SNTERMOF(AWF)))l
DEPOF(Ll),REASONCAPPL,<TRM,Ll»)

ELSE PRINTMESC'NASTY APPL");

EXPR APPLSEM2(Ll,rRM:AWr);
IF ISPROOFSTEP(Ll)THEN
MKPROOFSTEP(MKWFF(RELOF(AWF-AWFFOF(L1)),MKAPPLTERM(FSTERMOF(AWF),TRM)I

MKAPPLTERM(SNTERMOF(AWF)1TRM)),
DEPOF(Ll)lREASON(,APPL,<Ll,TRM»)

ELSE PRINTMEi ("NASTY APPL");

I

LCFsmall 29

EXPR ABSTRO;
BEGIN NEW Ll.Vl.START^TART-PC;
IF CHECKCABSTR) A (L1«-NUMBER()) A (VIHOENTO) A SCO
THEN RETURN ABSTRSEMai.Vl); PC-START;
END;

EXPR ABSTRSEMdl.V! :AWF);
BEGIN
IF ISPROOFSTEP(Ll) A NOTFREE(VI ,DEPOF(Ll)) THEN

AWF^AWFFOF(ll) ALSO RETURN(MKPROOFSTEP(MKWFF(RELCF(AWF),
MKLAMBDATERM(V 1 ,FSTERMOF(AWF)),
MKL AWBDATERM(V 1 ,SNTERMOF(AWF))),

DEPOFan.REASONCABSTRAl.Vl»))
ELSE RETURNl^RINTMESfNASTY ABSTR")); END;

EXPR CASESO-

BEGIN NEW LI 1L21L31TRM1START; START«-PC;
IF CHECK('CASES) A (L1-NUMBER()) A (L2-NUMBER()) A

(L3«-NUMBER()) A (TRM-TERMO) A SCO
THEN RETURN CASESSEM(Li,L2(L3,TRM); PC»-START;

END;

EXPR CASESSEM(L1 ^2,1 S.TRMtWFl.WFZ.DI,02,03);
IF ISPROOFSTEP(Ll) A ISPR00FSTLP(L2) A ISPR00FSTEP(L3) A

E0UAL(WF1»-WFF0F(L1),WF2-WFF0F(L2)) A

EQUAL(WF2,WFF0F(L3)) A
TESTCASES(D1-DEP0F(L1),D2-DEP0F(L2),03«-DED0F(L3)1TRM)

THEN MKPR00FSTEP(WF1,UNI0N0F(REM0VE(DIIFIND(D11TRM1
,TT)),

UNIONOF(REMOVE(D21FiND(D2,TRM,,UU)),
REMOVE(D31FIND(D3,TRMI

,FF)))),
REASONCCASES/Ll ,L21L3,TRM»)

ELSE PRINTMESC'NASTY CASES");

EXPR INDUCTO;
BEGIN NEW L1,L2,L3)L4IV1,START; START-PC;
IF CHECKCINDUCT) A (Ll-NUMBERO) A (L2-NUMBER0) A {L3«-NUMBER()) A

(L4-NUMBER()) A (VIHOENTO) A SCO
THEN RETURN INDUCTSEM(L1,L2,L3IL4IV1); PC«-START;

END;

EXPR INDUCTSEM(L11L2IL3,L4,V1);
BEGIN NEW AWFl.WFS.FIX.MT.BV.MAT.FUNVl;
IF ISPROOFSTEP(Ll) A ISPR00FSTEP(L2) A ISPR00FSTEP(L3) AlSPR00FSTEP(L4) A

ISMUTERMiMT-SNTERMOFtAWFl-AWEFOFai))) A
ISFREEFORT(FIX»-FSTERMOF(MT),BV'-BVAROF(MT),MAT«-MATRIXOF(MT)) A
ISFREEFORWCUU.VI,WF3<-WFFOF(L3)) A

ISFREEF0RT(V1,BV1MAT) A
ISFREEF0RW(FUNV1-SUI3STG|MAT,V1)BV),V1,WF3) A

ISFREEF0RW{FIX)V1IWF3) A
EOUAL{WFFOF(L2),SUBWV(WF31'UU,Vl)) A
EQUAL(WFF0F(L4),SUBWV(WF3IFUNV1 .Vl)) A

MEM0(L3,DEPOF(L4))
THEN RETURN MKPR00FSTEKSUBWV(WF3,FSTERM0F(AWF1)1V1)I

UNI0N0F(UNI0N0F(DEP0F(Ll),DEP0F(L2)),
REMOVE(UNI0N0F(DEP0F|L3)(0EPOF(L4)),L3)),

/

1
LCFsmall 30

REAS0N(,INÜUCT1<L1,L2,L3(L4,V1»)
ELSE PRINTMESfNASTY INDUCT");
END;

EXPR CONV();
BEGIN NEW Li.TRM.START^TART-PC;
IF .HECK('CONV) A (Ll-NUMBER()) A SCO

THEN RETURN CONVSEM1 (LI); PC-START;
IF CHECKCCONV) A (TRM<-TERM()) A SCO

THEN RETURN CONVSEM2(TRM); PC-START;
END;

EXPR CONVSEMKLhAWF);
IF ISPROOFSTEP(Ll)
THEN MKPROOFSTEP(MKWFF(RELOF(AWF-AWFFOF(L1)),

CONVKFSTERMOFtAWF^CONVTISNTERMOFIAWF))),
DEP0F(L1 l.REASONCCONV/Li»)

ELSE PRINTWESC'NASTY CQNV");

EXPR CONVSEM2(TRM);
MKPROOFSTEP(MKWFF(,?=,TRM1CONVT{TRM))l

,NO::P,REASON(,CONV,<TRM»);

EXPR ETACONVO;
BEGIN NEW TRM.START;START-PC;
IF CHECK('ETACONV) A (TRM-TERMO) A SCO
THEN RETURN ETACONVSEM{TRM); PC-START;

END;

EXPR ETACONVSEW(TRM);
IF ISLAMBDATERM(TRM) A ISAPPLTERM(MATRIXOF(TRM)) A

EQ(BVAROF(TRM),ARGOF(WATRIXOF;TRM))) A

NOTFRVT(BVAROF(TRM),FNOF(MATRIXOF(TRM)))
THEN MKPROüFSTEP(MKWFF('?F)TRM1FNOF{MATRIXOF(TRM))),

'NCOEP.REASONCETACGNV/TRM»)
ELSE PRINTWESC'NASTY ETACONV);

EXPR ALPHACONVO;
BEGIN NEW Ll,TRM1Vi1V2,START;START-PC;
IF CHECKCALPHACONV) A (Ll-NUMBERO) A (V1-IDENT0) A (V2»-IDENT()) A SCO

THEN RETURN(AC0NVSEM1(L1,V11V2)); PC-START;
IF CHECKCALPHACONV) A (TRM-TERMO) A (Vi-IDENTO) A (V2-IDENTO) A SCO

THEN RETURN(ACONVSEM2(TRM,Vi,V2)); PC-START;
END;

EXPR AC0NVSEM1(L1,V1,V2 IAW.FS);

IF ISPROOFSTEP(LI)
THEN MKPROOFSTEP(MKWFF(RELOFIAWF-AWFFOF(L1)),FS-ACONV|FSTERMOF<AWF),V1,V2),

IF EQUAL(FS,FSTERMOF(AVvF)) THEN ACONV(SNTERMOF(AWF)IVllV2)
ELSE SNTERMOF(AWF)),

DEPOF(Ll), REASONCALPHACONV, <LI,V1,V2>))
ELSE PRINTMESC'NASTY ALPHACONV");

EXPR AC0NVSEM2(TRMIV11V2);
MKPROOFSTEP(MKWFFC?i,TRM1ACONV(TRM,Vl,V2)),,NODEP,REASON(,ALPHACONV,<TRM,Vl,V2»)5

AM

LCFsmall 31

EXPR REFLISEM(TRM);
MKPROOFSTEPCMKWFFCrHjRM.fRM). 'NODEP , REASONCREFL!/TRM»);

EXP« REFL2I);
BEGIN NEW TRM.START; START-PC;
IF CHECKCREFLZ) A (TRM-TERMO) A SCO
THEN RETURN RZFL2SEM(TRM); PC-START;

END;

EXPR REFL2SEM(TRM);

MKPROOFSTEPCMKWFFCrcJRM/RM), 'NOOEP , REASON(,REFL2,<TRM»);

EXPR MINK);
BEGIN NEW TRM.START; START-PC;
IF CHECM'MINl) A (TRM-TERM()) A SCO
THEN RETURN MINISEM(TRM); PC-START;

END;
.

EXPR MINISEM(TRM);
MKPROOFSTEPtMKWFFCrc/UU.TRMj.'NODEP , REASONCMINl.aRM»);

EXPR MIN2();
BEGIN NEW TRM.START; START-PC;
IF CHECK(,MIN2) A (TRM-TERMO) A SCO
THEN RETURN MIN2SEM(TRM); PC-START;

END;

EXPR MIN2SEM(TRM);
MKPROOFSTEP(MKWFF(,?s,MKAPPLTERM(,UU,TRM);UU),,NODEPlREASON(,MIN2l<TRM»);

EXPR CONDTO;
BEGIN NEW TRM.START; START-PC;
IF CHECKCCONOT) A (TRM-CONQTEhMO) A SCO

•

EXPR EQUIVO;
BEGIN NEW LI.L2,STA,?T; START-PC; .
IF CHECKCEQUIV) A (LI-NUM8ER0) A (L2-NUMBER()) A SCO I
THEN RETURN E0UIVSEM{ul.L2); PC-START;

END;

EXPR EOUIVSEM(L1,L2:AWF1,AWF2);

IF iSPROOFSTEP(L 1) A ISPROOFSTEP(L2)
A ISLTAWFF{AWF1-AWFF0F(L1)) AISLTAWFF(AWF2-AWFFOF(L2))
A EOUAL(FSTERMOC(AWF1), SNTERMOF(AWF2))
A EQUAL(FSTERMOF(AWF2). SNTERMOF(AWFl))

THEN MKPROOFSTEP(MKWFF(,?=,FSTERMOF(AWFl),SNTERMOF(AWFl)),
UNIONOF(DEPOF(L1),DEPOF(L2)),REASON(,EOUIV,<L1,L2»)

ELSE PRINTMESC'NASTY EQUIV);

EXPR REFLIO;
BEGIN NEW TRM.START; START-PC;
IF CHECKCREFLl) A (TRM-TERM()) A SCO
THEN RETURN REFLISEM(TRM); PC-START;

END;

I

-

LCFsmall 32

THEN RETURN CONDTSEM(TRM); PC-START;
END,

EXPR CONDTStkKTRM);
IF ISTTCOND(TRM)
THEN MKPROOFSTEPWKWFFI'rHjRMJRUCASOFCTRMN.'NODEP , REASONCCONDT^TRM»)
ELSE PRINTMESC'NASTY CONDT");

EXPR CONOFOt
BEGIN NEW TRM.START; START«-PC;
IF CHECKCCONDF) A (TRM-CONDTERM()) A SCO
THEN RETURN CONDFSEM(TRM);PC*-START;

END;

EXPR CONDFSEM(TRM);
IF ISFFCONDdRM)
THEN MKPROOFSTEPIMKWFFCr^TRM.FALCASOFITRMJVNODEP , REASONCCONDF/TRM»)
ELSE PRINTMESC'NASTY CONDF");

EXPR CONOUOi
BEGIN NEW TRM.START; START-PC;
IF CHECKCCONDU) A (TRM-CONDTERM()) A SCO
THEN RETURN CONDUSEM(TRM); PC-START;

END;

EXPR CONDUSEM(TRM);
IF ISUUCOND(TRM)
THEN MKPROOFSTEPWKWFFCTtJRM/UUVNODEP , REASONCCONDU.aRM»)
ELSE PRINTMESTNASTY CONDU");

EXPR FIXPO;
BEGIN NEW L1,START;START-PC;
IF CHECKCFIXP) A (Ll-NUMBERO) A SCO
THEN RETURN FIXPSEM(LI); PC-START;

END;

EXPR FIXPSEM(L1 :AWF,MT,FIX,BV,MA);
IF ISPROOFSTEP(Ll) A ISMUTERM(MT-(SNTERMOF(AWF-AWFFOF(Ll)))) A

ISFREEFORT(FIX-FSTERMOF(AWF),BV-BVAROF(MT),MA-MATRIXOF(MT))
THEN RETURN(Mi<PROOFSTEP(MKWFF('?=1FIXlSUBSTG(MA,FIX>BV))1

DEPOF(Ll),REASON('FIXP,<Ll»))
ELSE RETURN(PRINTMES(HNASTY FIXP"));

EXPR SUBSTO-

BEGIN NEW L11N,L2,TRM,START;START-PC;
IF CHECKCSUBST) A (Ll-NUMBERO) A CHECKCOCC) A (N«-NUMBERO)

A CHECKv'IN) A (L2-NUMBER()) A SCO
THEN RETURN SUBSTSEM1 (L1)N(L2); PC-START;

IF CHECKCSUBST) A (Ll-NUMBERO) A CHECKCOCC) A (N-NUMBERO)
A CHECKCIN) A (TRM-TERMO) A SCO

THEN RETURN SUBSTSEM2(L1.N,TRM); PC-START;
END;

EXPR SUCSTSEM1(L1,NIL2);

/

LCFsmall 33

BEGIN NEW AWF1,AWF2,DEP;
IF ISPROOFSTEP(Ll) A ISPR00FSTEP(L2) A ISEQUiVAWFF{AWFl»-AWFFOF(Ll))
THEN AWF2*- AWFF0F(L2) ALSO

DEP-UNIONOF(DEPOF(Ll l.DEPOFdi)) ALSO
RETURN MKPROOFSTEP(SUBW(AWF2lAWF i ,N),DEP,

REASONCSUBST/LI /OCC.N/IN.LZ»)
ELSE RETURN PRINTMESfNASTY SUBST");

END;

EXPR SUBSTSEM2(L1IN,TRM);
BEGIN NEW AWF.REL.SNT;
IF ISPROOFSTEP(Ll)
THEN AWF-AWFFOF(Ll) ALSO REL-REIOF(AWF) ALSO

SNT*-SUBSTTT(TRM,SNTERMOF(AWF)lFSTERMOF(AWF)1N) ALSO
RETURN MKPROOFSTEP(MKWFF(REL,TRM,SNT)1DEPOF(L1),

REASONCSUBST^L 1 .OCCN/INJRM»)
ELSE RETURN(PRINTMES("NASTY SUBST"));

END;

LCFsmall 34

APPENDIX 5

AUXILIARY COMMANDS

EXFR SHOWO;
BEGIN NEW N!,N2,START;
START-PC;
IF CHECKCSHOW) A CHECKCLINE} A (Nl-NU^ERO) A

OPT(COLON() A (N2-NUMBER())) A SCO
THEN RETURN SNOWUMftil|N2)|

PC-START;
END;

EXPR SH0WSEMIN1,N2);
BEGIN
IF NULL(N2) THEN N2-N1;
TERPRKPRINCdERPKii" ")));

A; IF(N1<N2) THEN
(IF ISPROOFSTEP(Nl)
THEN TERPRI(PRINTLINE{SEAPCH(N1 .PROOF))) ALSO Nl-NM ALSO GO A
ELSE RETURN PRINTMESC'NONEXISTING STEP"))

ELSE RETURN PRINCC ");
END;

EXPR FETCHO;
BEGIN NEW ID, START;
START-PC;
IF CHECK ('FETCH) A (IDHDENTO) A SCO THEN RETURN FETCHSEM(ID);
PC-START;
END;

EXPR FETCHSEW(ID);
INC(EVAL«,INPUT,'FOO,'DSK?:>«<lD»,NIL);

EXPR CANCELO;
BEGIN NEW N.START; START-PC;
IF CHECK('CANCEL) A OPT!N-NUMBER()) A SCO

THEN RETURN CANCELSEM(N);
PC-START; END;

EXPR CANCELSEM(N);
BEGIN
IF NULL(N) THEN N-PFLENGTH;
IF (N<1)

THEN (PFLENGTH-O)
ALSO (PROOF-NIL)
ALSO RETURN (PRINTMESfYOU HAVE DEMOLISHED YOUR PROOF"));

A- IF (PFLENGTH LESSP N) THEN RETURN(PRINTM(PFLENGTH));
PFLENGTH-(PFLENGTH-l);
PROOF-CDR PROOF;
GO A;
END;

m^^

LCFsmall 35

APPENDIX 6

AUXILIARY FUNCTIONS

6.1 Predicates on Free and Bound Occurrences of Varibles on Terms, Awffs. etc.

EXPR NOTBNDVT{V,TRM);
BEGIN
IF ISIDENT(TRM) THEN RETURN T|
IF ISAPPLTERW(TRM) THEN RETURN (NOTBNOVTIV.FNOFITRM'JA

NOTBNDVT(V,ARGOF(TRM)));
IF ISCONDTERM(TRM) THEN RETURN (NOTBNDVTtV.PREDOFaRkDJA

NOTBNDVT(V,TRUCASOF(TRM))A

NOTBNDVT(V,FALCASOF(TRM)));
ir(ISLAMBDATERM(TRW) v iSMUTERW(TRM))

THEN (IF EQ(BVAROF(TRM),V) THEN RETURN NIL
ELSE RETURN NOTBNDVT(V,MATRIXOF{TRM)));

END;

EXPR BOUNDVIV.TRM); ^NQTBNDVTIVJRM);

EXPR NOTFRVT(V,TRM);

BEGI|F ISAPPLTERM(TRM) THEN RETURN (NOTFRVT(V1FNOF(TRM))ANOTFRVT(V,ARGOFO.,,M)));

IF ISCONDTERM(TRM) THEN RETURN (NOTFRVT(V(PREDOF(TRM)) A
NOTFRVT(V,TRUCASOF(TRM)) A

NOTFRVT(V1FALCASOF(TRM)));
IF ISLAMBDATERM(TRM) v ISMUTERMITRM)

THEN RETURN (EQIV.BVAROFITRM)) v NOTFRVT(V,MATRIXOF(TRM)));
RETURN! -EQ(V,TRM));

END;

EXPR FREEV(V,TRM); (-NOTFRVTIVJRM));

EXPR NOTFRVW(V,WF);
IF EMPTY(WF) THEN T
ELSE NOTFRVT(V,FSTERMOF(FSTOF(WF))) A

NOTFRVT(V,SNTERMCF(FSTOF(WF))) A
NOTFRVW(V,RMDR(WF));

EXPR NOTFREE(V,LN);
IF EMPTY(LN) THEN T ELSE
(IF NOTFRVW(V,WFFOF(FSTOF(LN))) THEN NOTFREEO/.RMDRO-N)));

EXPR ISFREEFORT(X1V,TRM);
BEGIN
IF ISIDENT(TRM) THEN RETURN T;
IF ISAPPLTERM(TRM) THEN RETURN ISFREEFORT(X,V,FNOF(TRM))A

ISFREEFORT(XIV1ARGOF(TRM));

IF ISCONDTERM(TRM) THEN RETURN ISFREEFORT(X,V,PREDOF(TRM))A
ISFREEFORT(XIV,TRUCASOF(TRM)) A

ISFREEFORT(XIV,FALCASOF(TRM)) ;

/

LCFsmall ^6

IF ISLAMBDATERM(TRM) v ISMUTERM(TRM) THEN
IF EO(V BVAROF(TRM)) v FREEV(BVAROF(TRM),X) THEN RETURN NIL

ELSE RETURN ISFREEFORTiX.V.MATRIXOF^RM));

END;

EXPR ISFREEFORWtX.V.WF);
IF EMPTY{WF) THEN T
ELSE ISFREEFORTIX.V.FSTERMOFiFSTOFWF))) A

ISFREEFORTlX)V.SNTERMOF(F3TOF(WF)))/'
ISFREEFORWtX.V.RMDRIWF));

6.2 Miscellaneous Functions Used in 1NCL. CUT. CASES, SHOW

EXPR PICKUP(WF,N);
IF E0(N,I) THEN <FSTOF(WF)> ELSE PICKUP(RMDR(WF),N-1);

EXPR INCLTEST(LN,WF);
BFGIN
IF EMPTY(LN) THEN RETURN(T):
IF TESTM(WFFOF(FSTOF(LN))1WF^ THEN RETURNdNCLTESTCRMDRaNj.WF));

END;

EXPR TESTM{WF1,WF2);
IFEMPTY(WFl) THENT
ELSE MEMBER(FSTOF(WFl),WF2) A TESTM(RMDR(WF1).WF2);

EXPR TESTCASES(LN11LN2,LN3,TRM);
TESTaMKWFFr^TRM.'TTM-Nl) A

TESTC(MKAWF('?=>TRM,'UU),LN2) A

TESTCCMKAWFCT^.TRM.'FFl.LNa);

EXPR TESTC(WF,LN);
IF EMPTY(LN) THEN NIL ELSE

IF EQUAL(WF,WFFOF(FST0F(LN))) THEN T
ELSE TESTC(WF,RMDR(LN));

EXPR FIND(LN,TRM1.TRM2);
IF EMPTY(LN) THEN NIL ELSE
IF EQUAL(MKWFF(,?r,TRMl.TRM2),WFFOF(FSTOF(LN)))
THEN FSTOF(LN) ELSE FINDIRMDR(LN),TRM1>TRM2);

EXPR REMOVE(LN,N);
IF E0(LN,NIL) THEN NIL ELSE
(IF EQ(NIFSTOF(LN)) THEN RMOR(LN)
ELSE (FSTOF(LN) CONS REMOVElRMDRO-Nj.N)));

EXPROPT(X);
IF X THEN X ELSE T;

6.S Conversion and Substitution Routines

mm

/

LCFsmall 37

EXPR CONVT(TRM);
BEGIN NEW BV.MAS.MA.FNEW;
IF ISIDENT(TRM) THEN RETURN TRM;
IF ISCONDTERM(TRM) THEN RETURN MKCONDTERM(CONVT(PREDOF(TRM)),

CONVT(TRUCASOF(TRM)).CONVT(FALCASOF(TRM)));
IF ISLAMBDATERM(TRM) THEN RETURN MKLAMBDATERMlBVAROFCTRMKCONVTWATRIXOFdRM)));
IF ISMUTERM(TRM) THEN RETURN MKMUTERMCBVAROFITRMl.CONVTtMATRIXOFITRM)));
IF ISAPPLTERM(TRM) THEN

(IF ISLAMBDATEPV(FNOF(TRM))
THEN BV-BVAROr(FNOF(TRM))
ALSO MA^MATRIXOF(FNOF(TRM))
ALSOMAS-SUBSTGlMA.CONVTIARGOHTRMJl.BV)
ALSO RETURN IF EQUAHMA.KMS) THEN TRM ELSE

CONVT(MAS)
ELSE RETURN IF ISLAMBOATERM(FNEW-CONVT(FNOF(TRM))) THEN

CONVT(M»<;APPLTERM|FrjEW,CONVT(ARGOF(TRM))))
ELSE MKAPPLTERMIFNEW.CONVTiARGOFaRM))));

END;

EXPR SUBSTG^RM.X.Vl);
BEGIN
IF ISIDENT(TRM) A EQ(TRM.V1) THEN RETURN X;
IF ISIDENT(TRM) THEN RETURN TRM;
IF ISAPPLTERM(TRM) THEN RETURN MKAPPLTERM(SUBSTG(FNOF(TRM),X1Vl),

SUBSTGiARGOFlTRMl.X.V D);
IF ISCONDTERM(TRM) THEN RETURN MKCONDTERMlSUBSTGIPREDOFITRMj.X.Vl),

SUBSTGiTRUCASOFaRMj.X.Vl),
SUBSTG(FALCASOF(TRM),X,Vl));

IF ISLAMBDAi:RM(TRM)
THEN RETUR^ (IF EQ(Vl,BVAROF(TRM)) v FREEV(BVAROF(TRM),X)

THEN TRM
ELSE MKLAMBDATERM(BVAROF(TRM)1SUBSTG(MATRIXOF(TRM),X,Vl)));

IF ISMUTERM(TRM)
THEN RETURN (IF EO(Vl.BVAROF(TRM)) v FREEV(BVAROF(TRM)1X)

THEN TRM
ELSE MKMUTERM(BVAROF(TRM)1SUBSTG(MATRIXOF(TRM),X,Vl)));

END;

EXPR ACONV(TRM,VI.V2:X);
BEGIN
IF NOTBNDVT(V2,TRM) THEN RETURN TRM;
IF ISCONDTEPM(TRM) THEN BEGIN
IF BOUNDV(V2,PREDOF(TRM)) THEN RETURN MKCONDTERM(ACONV(PREDOF(TRM)IVllV2).

TRUCASOF(TRM),FALCASOF(TRM));
IF BOUNDV(V2,TRUCASOF(TRM)) THEN RETURN MKCONDTERM(PREDOF(TRM)1

ACONVaRUCASOF^RMj.V 1 ,V2),FALCASOF(TRM));
IF BOUNDV(V2,FALCA50F(TRM)) THEN RETURN MKCONDTERM(PREDOF(TRM),

TRUCASOF(TRM),ACONV(FALCASOF(TRM),Vl.V2));END}
IF ISAPPLTERM(TRM) A 80UNDV(V2.FN0F(TRM))
THEN RETURN MKAPPLTERM(ACONV(FNOF(TRM),VI,V2)1ARGOF(TRM));

IF ISAPPLTERM(TRM)
THEN RETURN MKAPPLTERM(FNOF(TRM),ACONV(ARGOF(TRM)1Vl,V2));

IF ISLAMBDATERM{TRM) A EO(V2,BVAROF(TRM))
THEN RETURN (IF FREEVtVl.MATRlXOFCTRM)) v

EOUAL(X-SUBSTG(MATRIXOF(TRM),V11V2),MATRIXOF(TRM))

THEN TRM

LCFsmall 38

ELSE MKLAMBDATERM(V1,X));
IF ISLAMBDATERM(TRM)
THEN RETURN MKLAMBDATERM(BVAR0F(TRM),AC0NV(MATRIX0F(TRM),V1 ,V2))}

IF ISMUTERM(TRM) A EOlVZ.BVAROFCTRM))
THEN RETURN (IF FREEV(Vl,MATRIXOF(TRM)) v

EOUAL(X-SUBSTG(MATRIXOF{TRM)1Vl)V2)1MATRIXOF(TRM))
THEN TRM
ELSE MKMUTERM(Vi,X));

IF ISMUTERM(TRM)
THEN RETURN MKMUTERM(BVAROF(TRM)lACONV(MATRIXOF(TRM),Vl1V2));

END;

EXPR SUBWtAWFl.AWFZ.N);
BEGIN NEW TRMl.TRMZ;
SUBCOUNT-N;
TRM1 -DOSUBST(FSTERMOF(AWFl)ISNTERMOF(AWF2),FSTERMOF(AWF2));
TRM2-(IF EO(SUBCOUNT,C) THEN SNTERMOF(AWFl)

ELSE DOSUBST(SNTERMOF(AWFl),SNTERMOF(AWF2)1FSTERMOF(AWF2)));
RETURN MKWFF(RELOF(AWF!),TRM11TRM2);
END;

EXPR SUBSTTT(TRM11TRM21TRM31N);
BEGIN
SUBCOUNT-N;
RETURN D0SUBST(TRM11TRM2)TRM3);
END;

EXPR DGSUBST(TRM1.TRM2,TRM3);
BEGIN NEW AUX1,AUX2,AUX3;
IF EOUAL(TRMl,TRM3) THEN (SUBCOUNT-SUBCOUNT-1) ALSO

(IF EOCSUBCOUNT.O) THEN RETURN TRM2 ELSE RETURN TRM1);
IF ISIDENT(TRM]) THEN RETURN TRM!;
IF ISCONDTERM(TRMl) THEN

AUXI»-DOSUBST(PREOOF(TRMl),TRM21iRM3) ALSO
AUX2-(IF EO(SUBCOUNT,0) THEN TRUCASOF(TRMl)

ELSE DOSUBST(TRUCASOF(TRMl))TRM2,TRM3)) ALSO
AUX3-(IF E0(SUBCOUNT,0) THEN FALCASOF(TRMl)

ELSE DOSUBST(FALCASOF(TRM1),TRM2,TRM3)) ALSO
RETURN MKCONDTERM(AUX 11AUX2,AUX3);

IF ISAPPLTERM(TRMI) THEN
AUX1-D0SUBST(FN0F(TRM1)1TRW2,TRM3) ALSO
AUX2-(IF EO(SUBCOUNT.O) THEN ARGOF(TRMl)

ELSE D0SUBST(ARG0F(TRM1)ITRM2>TRM3)) ALSO
RETURN MKAPPLTERM(AUXI,AUX2);

IF ISLAMBDATERM(TRMi) v ISMUTERM(TRMl) THEN
IF FREEV(BVAROF(TRMl),TRM2) v FREEV(BVAROF(TRMl l.TRMS) THEN

RETURN TRM1 ELSE RETURN
(IF ISLAMBDATERM(TRMl)

THEN MKLAMBDATERM(BVAROr(TRMl)1DOSUBST(MATRIXOF(TRMI)1TRM2,TRM3))
ELSE MKMUTERM(BVAROF(TRMl /.OOSUBSTO^ATRIXOFgRMl),TRM2,TRM3)));

END;

«^

LCFsmall 39

i

APPENDIX 7

MANIPULATION OF THE DATA STRUCTURE

7.1 Conitructors

EXPR MKCCNDTERM(PR,TC,FC); (7IC0ND CONS PR COt'S TC CONS FC);

EXPR MKAPPLTERMCFN.ARG); (7IAPPLY CONS FN CONS ARG);

EXPR MKLAMBDATERM^.TRM); ^LAMBDA CONS V CONS TRM);

EXPR MKMUTERMCV.TRM^; CTIMU CONS V CONS TRM);

EXPR MKAWF(X,Y,Z); (X CONS V CONS Z);

EXPR MKWFF{X,Y1Z); <(X CONS V CONS Z)>;

CXPR MKPROOFSTEP(X,Y,Z);IF EQCY/NODEP) THEN <X,NIL1Z> ELSE <X,Y,Z>;

EXPR REASON(X1Y);(X CONS Y);

7.2 Selfctors

EXPR PREDOF(TRM); CADR TRM ;

EXPR TRUCASOF(TRM); CADDR TRM ;

EXPR FALCASOF(TRM); CDDDR TRM ;

EXPR DEPOF(X:P); BEGIN P^SEARCH(X1PROOF);RETURN(P[3]);END;

EXPR RELOF(X); CAR X;

EXPR FSTERMOF(X); CADR X;

EXPR SNTERMOF(X); CDDR X;

EXPR AWFFOF(X); (CAR WFFOF(X));

EXPR WFFOF(X:P); BEGIN P^EARCHtf.PROOF); RETURN(P[2J);END;

EXPR FSTOF(X); CAR X ;

EXPR RMDR(X); CDR X ;

EXPR FNOF(X);CADR X;

LCFsmall 40

EXPR ARGOF(X); CDDR X;

EXPR BVAROF(X); CADR X;

EXPR MATRIXOF(X); CDDR X;

7.3 Predicates

EXPR ISEOUIVAWFF(AWF); E0(RELOF(AWF),,?i);

EXPR ISLTAWFF(AWF); EO(RELOF(AWF)1'?c);

EXPR ISINCUN.WF); (LNT(WF)>N);

EXPR ISTTCOND(TRM); EOCPREDCrdRM),'!!);

EXPR ISFFCONDCfRM); EQCPREDOFdRMl/FF);

EXPR ISUUCOND(TRM); EQCPREDOFdRMVUU);

EXPR ISPROOFSTEP(L); (PFLENGTH>L);

EXPR EMPTY(X); E0(X,NIL);

EXPR ISLINE(X); -(ATOM(X));

EXPR ISIDENT(X); ATOM(X);

EXPR ISAPPLTERM(TRM); EQ((CAR TRMVriAPPLY);

EXPR ISCONDTERM(TRM); E0((CAR TRM), 'TICOND);

EXPR ISLAMBDATERM(TRM); EQUCAR TRM) ;?!LAM8DA);

EXPR ISMUTERM{TRM); EQ((CAR TRM), 7IMU);

7.4 Miscellaneous Functions

EXPR UNIONOF{LNl,LN2);
BEGIN
IF EOdNl/NODEP) v E0(LN1,NIL) THEN RETURN LN2;
IF E0(LN2,'NODEP) v E0(LN2,NIL) THEN RETURN LN1;
IF MEMQ((CAR LN1),LN2) THEN RETUR.KUNIONOFKCDR LNI),LN2))

ELSE RETURN((CAR LN1) CONS (UNIONOF((COR LNl>,LN2)));
END;

EXPF UNI0NW;WF1,WF2);
IF EQUAUWFl.NIL) THEN WF2 E.SE

«^

LCFsmall 41

(IF MEMBER((CAR WF1),WF2) THEN UNIONW((CDR WF1)1WF2)
ELSE ((CAR WFI) CONS UNIONW((CDR WF1),WF2)));

EXPR ADDLINE(y);
BEGIN PFLENGTH «- PFl ENGTH ♦ 1;

PROOFM(PFLENGTH CONS X) CONS PROOF); END;

EXPR SEARCH(X, P);
IF EQ(P[I,1],X) THEN P[l] ELSE SEARCH(X,(CDR P));

EXPR LNT(X)i
IF E0((CDP X),NIL) THEN 1 ELSE (LNT(CDR X) ♦ 1);

EXPR SUBWV(WF,X1V:FS);
IF E0(WF1NIL) THEN NIL ELSE

(MKAWF(REI.OF(FS-FSTERMOF(WF)))SUBSTG(FSTERMOF(FS)lXIV)1

SUBSTG(SNTERMOF(FS),XlV)) CONS SUBWV(RMDR(WF)1X,V));

LCFsmall 42

INDEX

In this index all the funaions appearing in the program are listed in alphabetic order. Each name
is followed by the number of the appendix where the function is defined.

ABSTR 4
ABSTRSEM 4
ACONV G.3
ACONVSEMl 4
ACONVSEflZ 4
ADDL1NE 7.4
APPL 4
APPLSEni 4
APPLSEn2 4
ARGOF 7.2
ASSUriE 4
ASSUnESEH 4
AUFF 1.4
AUFFOF 7.2

BADL1NE 2
POUNDV e.i
BVAROF 7.2

CANCEL S
CANCELSEM 5
CASES 4
CASESSEH 4
CHECK 1.4
COLON 1.4
COMMA 1.4
CONDF 4
CONDFSEM 4
CONOT 4
CONDTERM 1.4
CONDTSEM 4
CONDU 4
CONDUSEM 4
CONJ 4
CONJSEM 4
CONV 4
CONVSEM1 4
CONVSEMZ 4
CONVT 6.3
CUT 4
CUTSEM 4

del scan 1.2
DEPOF 7.2
DOLLAR 1.4
DOSUBST 6.3

/

LCFsmall 4?

EHPTY 7.3
ETACONV 4
ETACONVSEM 4
EQU1V 4
EQUIVSEM 4

FALCASOF 7.2
FETCH 5
FETCHSEn 5
FIND B.2
FIXP 4
FIXPSEH 4
flush 1.3
FNOF 7.2
FREEV 6.1
FSTERHOF 7.2
FSTOF 7.2

HALF 4
HALFSEn 4

1DENT 1.4
idscan 1.2
INCL 4
INCLSEfl 4
INCLTEST B.2
INDUCT 4
INDUCTSEM 4
INIT 2
ISAPPLTERfl 7.3
ISCONüTEPn 7.3
ISEQUlVAUfT 7.3
ISFFCCND 7.3
ISFREEFORT 6.1
ISFREEFÜRU 6.1
ISIDENT 7.3
ISINCL 7.3
ISLAnBDATERD 7.3
ISL1NE 7.3
ISLTAUFF 7.3
'SnUTERM 7.3
iSPROOFSTEP 7.3
ISTTCÜND 7.3
ISUUCGND 7.3

1 ambcla 1.4
LAHBDATERn 1.4
LCFIN1T 2
LCFPROOF 2
LINE 2
LNT 7.4
LPAR 1.4
LSPIN1T 2
LSQBRACKET 1.4

HATRIXOF 7.2
nKAPPLTERn 7.1

I

mm

LCFsmall 44

tlKAUFF 7.1
HKCONDTERn 7.1
nKLAnBDATERM 7.1
tlKMUTERn 7.1
nKPROOFSTEP 7.1
MINI 4
niN2 k
flKUFF 7.1
niN.'SEn 4
niN2SEn 4
nu 1.4
r'UTERM 1.4

nextt 1.3
nextv 1.3
NOTPNDVT G.l
NOT'Hht B.l
NOTFRVT G.l
NOTFRVU G.l
NUHBER 1.4
numscan 1.2

OPT 6.2

peekt 1.3
peekv 1.3
PERIOD 1.4
PICKUP G.2
PREDOF 7.2
PRINTAUFF 3
PRINTLINE 3
PRINTLST 3
PRINTn 3
PRINTHES 3
PRINTNEULINE 3

RARROU 1.4
reacil ist 1.2
REASON 7.1
REFL1 4
REFL2 4
REFLlSEfl 4
REFLZSEM 4
REL 1.4
RELOF 7.2
Rr,DR 7.2
REMOVE G.2
RESUME 2
RPAR 1.4
RSQBRACKET 1.4

SC 1.4
scan 1.2
SCNINIT 2
SEARCH 7.4
setup 1.2
SHOU 5

/

^^m

LCFsmall 45

SHOUSEH 5
SinPLETERM 1.4
SNTERHOF 7.2
svn 4
svnsEn 4
SUBST 4
SUBSTG G.3
SUBSTSEtll 4
SUBSTSEn2 4
SUBSTTT G.3
SUBU G.3
SUBUV 7.4

TEST G.2
TESTLASES G.2
TESTfl G.2
TERM 1.4
token 1.3
tokent 1.3
tokenv 1.3
TRANS 4
TRANSSEH 4
TRUCASOF 7.2
tstack 1.3

UN10NOF 7.4
UNIONU 7.4

VALUE 1.4

UFF 1.4
UFFOF 7.2

^

